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ABSTRACT

This paper contains a study of two methods for use in a generic
nonlinear simulation tool that could be used to determine achievable
control dynamics and control power requirements while performing
perfect tracking maneuvers over the entire flight envelope.  The two
methods are NDI (nonlinear dynamic inversion) and the SOFFT
(Stochastic Optimal Feedforward and Feedback Technology)
feedforward control structure.  Equivalent discrete and continuous
SOFFT feedforward controllers have been developed.  These equivalent
forms clearly show that the closed-loop plant model loop is a plant
inversion and is the same as the NDI formulation.  The main difference is
that the NDI formulation has a closed-loop controller structure whereas
SOFFT uses an open-loop command model.  Continuous, discrete, and
hybrid controller structures have been developed and integrated into the
formulation.  Linear simulation results show that seven different
configurations all give essentially the same response, with the NDI
hybrid being slightly different.  The SOFFT controller gave better
tracking performance compared to the NDI controller when a nonlinear
saturation element was added.  Future plans include evaluation using a
nonlinear simulation.

Introduction

There is a need within the aerospace community for a generic nonlinear piloted simulation tool that
can be used to determine achievable control dynamics and control power requirements while it is
performing perfect tracking maneuvers over the entire flight envelope.  For this application the control
law needs to be simple, and ideally it should be applicable to any aircraft without the need for
adjustments.  In addition, control law robustness should never be an issue.  A simulation tool such as this
would potentially have many applications within the control and general aerospace communities.

One application of this tool would allow a quick and easy comparison of  various aerodynamic
databases, while performing the same maneuvers.  These databases could range from crude to high
fidelity and could be used at various stages of development.  This capability might be particularly
important during evaluation of some of the novel control effector concepts presently being explored
(ref. 1).  A designer could adjust various parameters and evaluate force and moment capability relative to
the entire aircraft database, and it could be done at various stages of development.

A second application could be the adjustment of flying qualities with pilot ratings while performing a
variety of expected worst-case maneuvers.  This application could help determine achievable dynamics
and give the control designer guidelines for the best performance possible.  Having this information, the
designer could be more efficient while trying to improve performance.  Another example is the
development of guidelines for reconfigurable control systems to accommodate failures.

Control allocation configurations could also be evaluated since the control law is capable of perfect
tracking, and the designer would not have to be concerned about the effect of control law deficiencies on
the evaluation.  A control allocation configuration must be selected a priori.  For a given flying qualities
model, various control allocation configurations can be compared, or vice-versa, for a given control
allocation, various flying qualities models can be evaluated.  With a selected flying qualities model and a
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control allocation configuration, other variables such as stick shaping, deadband width, and stick gains
could be evaluated.

It is likely that the large aerospace companies have a variety of tools available to accomplish the above
objectives, although they may not have this specific tool.  There is a need for smaller companies and
government research organizations to have tools with the above capabilities to improve research
efficiency.

A tool with the capability described was developed (ref. 2) by the Defence Research Agency (DRA) in
the United Kingdom as part of a NASA/DRA Cooperative Aeronautical Research Program. The DRA
called this exact nonlinear dynamic inversion (NDI) since the methodology is based upon dynamic
inversion that was developed for flight control law design (ref. 3).  The DRA application was to use the
NDI as an analysis tool during simulation and extract moments and appropriate coefficients from the
simulation.  The ability to extract the appropriate terms from the simulation allows the control approach
to be exact; therefore, control law robustness is not an issue.

The approach was successfully demonstrated on the HARV (High-Alpha Research Vehicle) (ref. 4) in
the NASA Langley Differential Maneuvering Simulator.  One deficiency with the reference 2 approach is
that the incorporation of flying qualities was not developed.  The control law only consisted of first- order
responses, whereas military specifications (ref. 5) require higher-order responses.

To offset this deficiency, the SOFFT (Stochastic Optimal Feedforward and Feedback Technology)
(refs. 6 and 7) methodology was investigated for applicability.  SOFFT was developed for flight control
application, and the feedforward structure allows precise tracking with the ability to incorporate any
desired flying qualities into a command model which is imbedded within the feedforward controller.  The
approach was developed for a discrete controller by using linear models.  Therefore, a disadvantage is
that linear derivatives must be calculated in real time and then transformed to discrete form.  The
advantage over reference 2 is that higher order models can be used for exact tracking.

This paper contains a study of the two approaches for use in the development of a real-time piloted
simulation tool which can be used to determine achievable control dynamics and control power
requirements.  The first section contains a review of the DRA approach to NDI.  A review of the SOFFT
approach is discussed in the second section and includes equations for both discrete and continuous
controllers.  Implementing SOFFT into a form similar to NDI shows that SOFFT also includes a plant
inversion.  The third section contains an analysis of the closed-loop plant model that illustrates the
transfer function characteristics for both the continuous and discrete models.  The fourth section shows an
approach for incorporating flying qualities into the closed-loop NDI structure for both continuous
formulations and discrete formulations.  Hybrid formulations are then developed for both NDI and
SOFFT.  In the final section, simulation results illustrate that the methods give the same performance for
purely linear plant models with all-continuous or all-discrete control systems.  The hybrid SOFFT
controller gave essentially the same results while the hybrid NDI controller had a slight error in the pitch
rate response.  In addition, the SOFFT structure gives better performance when a nonlinearity such as
actuator saturation is included.

Symbols

A system matrix for continuous systems

af filter pole for plant inversion structure, rad/sec
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aij row i and column j element in A matrix

AV, Aα, Aq, Aθ row vectors in Ax (plant model) matrix

Bx control input matrix for continuous systems

BV, Bα, Bq row vectors in Bx (plant model) matrix

C output matrix for continuous systems

e error signal

Hx, Hy matrices used to select controlled states and outputs, respectively

I identity matrix of appropriate dimensions

Ix, Iy, Iz moments of inertia about the x-y-z axes, respectively

Ixz xz axes product of inertia

K gain for second-order continuous system response

Ku, Kz , K x
* matrices used in SOFFT feedforward controller

K1, K2, K3 gains in the second-order discrete system response

L, M, N roll, pitch, and yaw moments about the x-y-z axes, respectively

LA, MA, NA aerodynamic roll, pitch, and yaw moments, respectively

Ldes, Mdes, Ndes desired roll, pitch, and yaw moments, respectively

LT, MT, NT engine thrust roll, pitch, and yaw moments, respectively

Lx, Mx, Nx airframe and engine roll, pitch, and yaw moments, respectively

L N
dir dirδ δ, roll and yaw moments for directional control

L N
lat latδ δ, roll and yaw moments for lateral control

M
lonδ pitch moment for longitudinal control

p, q, r roll, pitch, and yaw rates about the x-y-z axes, respectively

˙, ˙, ˙p q r roll, pitch, and yaw accelerations about the x-y-z axes, respectively

s Laplace transform variable

T sampling period, sec
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u control signal

V velocity

x state-variable vector

ẋ time derivative of state-variable vector

y output-variable vector

z z-transform variable

α angle of attack

Γ control matrix for discrete systems

γi row i element in Γ  matrix

δ δ δdir lat lon, , directional, lateral, and longitudinal control effectors, respectively

ζ damping ratio

θ pitch attitude

τ time constant for first-order continuous system response

Φ state transition matrix for discrete systems

φij row i and column j element in Φ  matrix

ω natural frequency for second-order continuous system response

ωn numerator frequency in second-order continuous system response

Subscripts:

des desired command

k coefficient for sampling sequence at time tk

x plant model

z command model in SOFFT

Superscript:

* attached to plant model to represent ideal variables
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Abbreviations:

DRA Defence Research Agency

FB feedback controller

FF feedforward controller

HARV High-Alpha Research Vehicle

NDI nonlinear dynamic inversion

SOFFT Stochastic Optimal Feedforward and Feedback Technology

Review of Nonlinear Dynamic Inversion (NDI)

This section contains a review of the DRA approach to NDI, summarizing the key equations from
reference 2.  In this section, the x-y-z coordinate body axes are defined as shown in reference 8 with the
x-axis out the nose, the y-axis positive in the direction of the right wing, and the z-axis down, completing
a right-handed coordinate frame.  The nonlinear moment equations (ref. 8)  for a flat-earth, rigid-body,
symmetrical airplane are

L L I p I r I pq I I rq

M M I q I I pr I p r

N N I r I p I I pq I qr

A T x xz xz z y

A T y x z xz

A T z xz y x xz

+ = − − + −

+ = + − + −

+ = − + − +

˙ ˙ ( )

˙ ( ) ( )

˙ ˙ ( )

2 2 (1)

where LA , MA , and NA are the aerodynamic roll, pitch, and yaw moments about the x-y-z axes,
respectively; LT, MT, and NT are the moments about the x-y-z axes due to engine thrust; Ix , Iy , Iz , and
Ixz  are the moments and product of inertia; p, q, and r represent the roll, pitch, and yaw rates about the
x-y-z axes; and ṗ, q̇ , and ṙ  are the respective accelerations.

Moment data are usually defined in tables that are generated from wind tunnel and flight data.  These
tables usually contain coefficients that are nonlinear functions of many airplane variables, for example,
angle-of-attack α, sideslip angle β, Mach, altitude h, and control surface deflections δ, and are denoted in
a form such as

L L Mach L Mach L Mach

M M Mach M Mach

N N Mach N Mach N Mach

x lat dir

x lon

x lat

lat dir

lon

lat dir

= + +

= +

= + +

( , , , ...) ( , , , , ...) ( , , , , ...)

( , , , ...) ( , , , , ...)

( , , , ...) ( , , , , ...) ( , , , ,

α β α β δ δ α β δ δ

α β α β δ δ

α β α β δ δ α β δ

δ δ

δ

δ δ ...)...)δ dir

(2)

For simplicity, the variables in parentheses will be represented by (...) in the remainder of this section.
In equations (2), the nonlinear airframe and engine moment terms Lx(...), Mx(...), and Nx(...)
are shown separated from the nonlinear control moment effectiveness terms

  
L L M N

lat dir lon latδ δ δ δK K K K( ) ( ) ( ) ( ), , , , and N
dirδ (...) , which are shown multiplied by the control

deflections δ δ δlat lon dir, ,( ) .  In actual practice, the moments may be a combination of several
incremental moments generated within the simulation.  In a linear problem, equations (2) would be
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represented by linear derivatives multiplied by state variables and controls.  Equations (2) assume one
principal control about each of the three rotational axes.  Control allocation methods, which are a separate
problem, are required to distribute these control moments.

Desired acceleration commands, denoted by the subscript des, are generated by the controller.
Rewriting equations (1) to reflect these desired commands and combining the aerodynamic and engine-
generated moments yields

L I p I r I pq I I rq

M I q I I pr I p r

N I r I p I I pq I qr

des x des xz des xz z y

des y des x z xz

des z des xz des y x xz

= − − + −

= + − + −

= − + − +

˙ ˙ ( )

˙ ( ) ( )

˙ ˙ ( )

2 2 (3)

which defines the required moments about each axis for any desired rotational acceleration.  The required
control deflections are calculated by rearranging equations (2) after substituting the desired moments for
the left-hand sides.  Separating the longitudinal and lateral-directional axes gives

δ δlon des xM M M
lon

= −( )(...) / (...) (4)

δ
δ

δ δ

δ δ

lat

dir

des x

des x

L L

N N
L L

N N
lat dir

lat dir









=










−
−









−(...) (...)

(...) (...)
(...)

(...)

1

(5)

where the control effectiveness terms are inverted.

It is possible to bypass the control inversion and actuator models and pass moments directly to the
simulation equations of motion in order to study control-power requirements.  This configuration would
effectively be a simulation with virtual moments.  For example, Mdes − Mx(...) represents the longitudinal
control moment required to make the aircraft respond perfectly to the desired moment.  By using this
operational mode, control allocation problems and actuator nonlinearities are avoided.  During
simulation, the required control power can be monitored for any desired flying qualities and maneuvers.
For any maneuver in which peak control moments exceed available control moments, the excess required
moments can be measured.

The above procedure can be summarized as

1. Create desired angular accelerations ˙ , ˙ , ˙p q rdes des des from the Command Generator.

2. Implement eqs. (3) for Ldes, Mdes, Ndes

3. Implement eqs. (4) and (5) to calculate δlat , δlon, δdir

Outputs from the simulation include

1. Inertias Ix, Iy, Iz, Ixz

2. Airplane angular rates p, q, r

3. Aerodynamic and engine thrust moments Lx (...), Mx (...), Nx (...)
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4. Control effectiveness terms 
  
L L M N N

lat dir lon lat dirδ δ δ δ δK K K K K( ) ( ) ( ) ( ) ( ), , , , ,

Figure 1 shows an example of the NDI procedure for a longitudinal case.  The positive sign on the
nonlinear dynamics terms is for consistency with the longitudinal expression in equations (3).

Review of the SOFFT Approach

SOFFT was developed (ref. 6) as a flight control methodology to separate the feedforward (FF) and
feedback (FB) control objectives, in which each controller can be designed with different cost functions.
The FF controller should be influenced mainly by objectives that relate system response to pilot input
commands, whereas the FB controller should be influenced by objectives such as closed-loop stability,
robustness, and noise attenuation.  The SOFFT structure is shown in figure 2, where nominal trajectory

commands yx
*  and ux

*  are calculated by the FF controller and then sent to the FB controller and plant
input, respectively.  Errors in the FF signals are then compensated for by the feedback controller.

Since the objective of this paper is to investigate a technique that can perform perfect tracking during
simulation, only the SOFFT FF part of the control methodology needs to be explored.  As shown in
figure 3, the SOFFT FF controller consists of a command model, a plant model, and FF gains.  All
SOFFT dynamics are in discrete form, and the subscript k represents the sampling sequence at time tk .

Nonlinear
dynamic

terms

Command
generator

Iy Simulation

Airframe and engine
aero moments

Pilot
input

q

+

+ +

– δ lon1
M

lonδ (...)

q̇des Mdes

Figure 1. Longitudinal example of NDI approach.

Feedforward
controller

Feedback
controller

Plant
yx

*

ux
*

uz +
+ yx

Figure 2. SOFFT control system structure.
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Command
model

Plant
model

– –

–

Ku

Hy

– +

Kz

Kx
*

xk
*

ek
*

ux k,
*

yx k,
*

uz k,
xz k,

yz k,

Figure 3. SOFFT feedforward controller structure.

The command model incorporates flying qualities dynamics and transforms the input vector uz,k,
representative of pilot commands, into a commanded state vector xz,k and its corresponding output vector
yz,k.  The difference between pilot stick input and uz,k would typically include stick gains, stick shaping,

and possibly a small deadband.  A calculated control signal vector ux k,
*  is input to the plant model that

contains discrete dynamics representative of the actual plant.  Outputs from the plant model are the state

vector xk
*, which is fed back to the plant model input and the corresponding output vector yx k,

* .  Feed-

forward (FF) controller gain matrices Ku, Kz , and K x
* are based upon making selected plant model

outputs (or combinations of outputs), defined by constant matrix Hy, precisely track command model

outputs.  With perfect plant model tracking, the error vector signal ek
*  is always zero.  When this concept

is used, the FF controller will always have perfect tracking for whatever plant model is being used.

Discrete Modeling

Discrete dynamic equations describing the plant model and command model are

x x u

y C x

k x k x x k

x k x k

+ = +

=

1
* *

,
*

,
* *

Φ Γ
(6)

x x u

y C x

z k z z k z z k

z k z z k

, , ,

, ,

+ = +

=
1 Φ Γ

(7)

where subscripts x and z represent the plant model and command model, respectively, Φ represents a
discrete state transition matrix, Γ  represents a discrete control matrix, and C represents the output matrix.
Perfect tracking is accomplished when

e H y yk y x k z k
*

,
*

,= − = 0 . (8)
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Define Hx by

H y H C x H xy x k y x k x k,
* * *= = (9)

such that Hx = HyCx.

The FF gain matrices are calculated based upon equation (8) as (ref. 6):

K H Cu x x z z= −[ ]−Γ Γ1 (10)

K H Cz x x z z= −[ ]−Γ Φ1 (11)

K H Hx x x x x
* = [ ]−Γ Φ1 (12)

An equivalent SOFFT feedforward controller structure can be developed by inserting the FF gains into
the control equation

u K u K x K xx k u z k z z k x k,
*

, ,
* *= − − − (13)

and after factoring out the control inverse term Hx xΓ[ ]−1 and using equations (6) and (7) yields

u H y H xx k x x z k x x k,
*

,
*[ ]= −{ }−

+Γ Φ1
1 . (14)

This equivalent SOFFT feedforward control structure is illustrated in figure 4.  Clearly one advantage of
this form over the form shown in figure 3 is that gain matrices Ku and Kz do not have to be explicitly

uz k,

yx k,
*

ux k,
*

xk
*

yz k, +1

Hx xΓ[ ]−1

Hx xΦ

Discrete
plant

model

+

–

Open-loop command model

Plant inversion

x x u

y C x

y C x

z k z z k z z k

z k z z k

z k z z k

, , ,

, ,

, ,

+

+ +

= +

=

=

1

1 1

Φ Γ
Hy

ek
*

– +yz k,

Figure 4. Equivalent SOFFT discrete feedforward controller structure.
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calculated.  The closed-loop plant model shown within the dashed box represents a plant inversion for the
controlled variables, with inputs clearly coming from an open-loop command model.  The approach to
calculate moments as in the NDI approach will be discussed after the next section on continuous
modeling.

Continuous Modeling

Although SOFFT was developed by using a discrete form, similar equations can be developed for
continuous plant and command models.  Dynamic equations for the continuous plant model and
command model are

˙ * * *

* *

x A x B u

y C x

x x x

x x

= +

=
(15)

ẋ A x B u

y C x
z z z z z

z z z

= +
=

(16)

where A represents the state transition matrix, B represents the control matrix, C represents the output
matrix, and the subscripts are the same as defined previously.  Perfect tracking is accomplished when

e H y yy x z
* *= − = 0 (17)

Defining the FF gain matrices as

K H B C Bu x x z z= −[ ]−1 (18)

K H B C Az x x z z= −[ ]−1 (19)

K H B H Ax x x x x
* = [ ]−1 (20)

and inserting these gain matrices into the control equation gives

u H B y H A xx x x z x x
* *[ ] ˙= −{ }−1 (21)

The equivalent form for the continuous SOFFT feedforward controller is shown in figure 5.  Again, the
closed-loop plant model shown within the dashed box represents a plant inversion.  In the following
section it will be shown that the transfer function of the continuous model is different from the transfer
function of the discrete model.

Incorporating inertia terms into the controller in figure 5 creates a closed-loop plant model that can be
shown to have effectively an equivalent portion in figure 1.  The nonlinear dynamics terms are not
included in figure 5.  Using the longitudinal example and multiplying ẏz  (which corresponds to q̇des  in
figure 1) by Iy gives a moment command.  Multiplying the plant model feedback by Iy  is the same as
feeding back the plant aerodynamic moments, and incorporating the inverse of Iy into the plant input path
gives the inverse of the control effectiveness term in figure 1.
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Continuous
plant

model

+

–

Open-loop command model

Plant inversion

Hy
– +˙

˙ ˙

x A x B u

y C x

y C x

z z z z z

z z z

z z z

= +
=
=

uz
yz

ẏz

e*

H Bx x[ ]−1

H Ax x

ux
*

yx
*

x*

Figure 5. Equivalent SOFFT continuous feedforward controller structure.

Moments can also be generated in the discrete controller in figure 4, but the approach is more
complicated.  A moment command can be generated by taking the time increment yz,k+1 − yz,k, which is
then multiplied by Iy / T, where T is the sampling period.  Similar increments must be created in the plant
feedback path and the plant input path.

Closed-Loop Analysis

This section contains an analysis of the closed-loop plant model and illustrates the transfer function
characteristics for both the continuous model and the discrete model.  It should be noted that a
nonminimum phase system will result in an unstable closed-loop system for any configuration since the
zeros of the open-loop plant become poles of the closed-loop plant model.

The continuous model transfer function is illustrated first using a  longitudinal example.  Let

x V q T* [ , , , ]= α θ (22)

where V is the total velocity, α is the angle of attack, q is the pitch rate, and θ is the pitch attitude.  The Ax
matrix is defined in terms of row vectors, and the Bx matrix is defined in terms of scalar elements as

A

A

A

A

A

x

V

q
=



















α

θ

               and            B

B

B

Bx

V

q
=



















α

0

(23)
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since there is one control for this example.  Assuming a pitch rate command with the plant model output
matrix Cx an identity matrix, then Hx and Hy are identical from the definition in equation (9) as

H Hx y= = [ ]0 0 1 0 (24)

giving

H A A

H B B

x x q

x x q

=

=
(25)

Inserting equations (25) into (21) and then the combination into equations (15) and making use of the
definition in equation (9) gives

˙ ˙* *

* * *

x

A B B A

A B B A

A

x

B B

B B
y

H y H C x H x

V V q q

q q

V q

q
z

y x y x x

=

−
−





















+





















= =

−

−

−

−

1

1

1

1

0 1

0

α α

θ

α

(26)

showing that the transfer function from ẏz  to H yx x
* is an integrator, as illustrated in figure 6.  Notice that

the internal dynamics for the uncontrolled states will be modified from their open-loop characteristics.

If the controlled variable is a linear combination of states where, for example, Hx  and Hy  are
defined as

H Hx y= = [ ]0 0 1 1 0. (27)

then the system and control input matrices in equation (26) will be modified as

˙

.

.

.

.
.

.

.

.* *x

A B
A A

B B

A B
A A

B B

A B
A A

B B
A

x

B

B B
B

B B
B

V V
q

q

q

q

q q
q

q

V

q

q

q

=

−
+

+

−
+

+

−
+

+





























+

+

+

0 1

0 1
0 1

0 1
0 1

0 1

0 1

0 1

0

α

α

α α
α

α
α

α
θ

α
α

α

..

˙

* * *

1
0

B B

y

H y H C x H x

q

z

y x y x x

α +



























= =

(28)

Similar to the previous example, the transfer function from ẏz  to H yx x
* is an integrator.  This integration

can be easily seen by premultiplying the ˙ *x  equation by Hx.  The resulting system matrix will be 0 and
the resulting control input will be scalar and equal to 1.
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Continuous closed-loop plant model

ẏz
s−1 H yy x

*

Discrete closed-loop plant model

yz k, +1

z−1 H yy x k,
*

Figure 6. Transfer functions for continuous and discrete closed-loop plant models.

A similar analysis can be made for a discrete system by making use of equation (14) for ux k,
* .  Given

the same pitch rate command defined in equation (24), the dynamic equations for the FF controller
become
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where again Cx is an identity matrix.  The main point of equation (29) is that the transfer function for the
controlled variables in a discrete system is not an integrator, but is a time delay as illustrated in figure 6.

Other Configurations

It is possible to create a system matrix for continuous systems or a state transition matrix for discrete
systems with nonzero elements in the controlled channel.  For example, a first-order filter can be

developed by modifying the feedback in figure 5 to be H A a Ix x f+( )where af  is the filter frequency and

I is an appropriate identity matrix.  By using this feedback, the pitch rate closed-loop system in
equation (26) is modified as

˙ * *

* * *
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(30)

where the filter frequency is the only element in the modified system matrix.  Since a low-pass filter is
created, the input should be the commanded response yz rather than the first derivative, which is needed
when an integrator is formed.  The input is shown multiplied by af to create a unity-gain filter.  This
modified feedback will be shown in a later section for development of a SOFFT hybrid controller.  A
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linear combination of states, as illustrated in equation (28), can also be implemented for the filter
approach.

Discrete systems can be modified in a similar manner.  For example, a discrete integrator can be
implemented by feeding back Hx(Φx − I) in place of HxΦx in figure 4.  This revised feedback will create a
“1” in the modified system matrix replacing the “0” in equation (29).

The next section will show how to implement closed-loop controllers for all continuous models, for all
discrete models, and for two hybrid cases where the plant is continuous but the controller is a sample data
system.  The hybrid system is expected to be the case for the desired application.

Incorporation of Flying Qualities

This section shows how command models can be integrated with the closed-loop plant inversion
transfer function to get the NDI form illustrated in figure 1.  First- and second-order models are shown for
continuous,  discrete, and hybrid controllers.  These models can be used either as open-loop command
models for use in SOFFT (figs. 4 and 5) or as closed-loop integrated models as in NDI.  In this section,
subscript “c” is used for the input command.

First-Order Continuous Formulation

Suppose a first-order transfer function with time constant τ of the form shown below is desired,

y

u
s

s sc
( ) =

+
=

+
1

1

1

1τ
τ

τ
(31)

then  the problem is to transform equation (31) into a form that uses the integrator characteristic of the
closed-loop plant inversion model.  The modeling approach used is to cross multiply as

s y s u sc+



 =1 1

τ τ
( ) ( ) (32)

then solve for y(s) as

y s s u s y sc( ) ( ) ( )= −{ }−1 1

τ
(33)

which is implemented as a closed-loop controller, as shown in figure 7.  The plant inversion transfer
function described in the previous section is illustrated by the dashed box when y = x.  Implementation of
the first-order controller does not require any dynamic elements.

The state-space transfer function is given as

˙

˙

x x u

y x

y x u

c

c

= − +

=

= − +

1 1

1 1

τ τ

τ τ

(34)
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ẏ

Figure 7. First-order transfer function for continuous models.

where equation (34) can be used as the SOFFT continuous open-loop command model shown in figure 5.

Second-Order Continuous Formulation

The first-order transfer function was trivial and could have been implemented directly from
equation (31).  The next case is for a second-order transfer function with numerator dynamics such as

y

u
s

K s

s sc

n( )
( )

=
+

+ +
ω

ζω ω2 22
(35)

where ω is the natural frequency, ζ is the damping ratio, and ωn is a zero of the transfer function.  Using
the approach shown above gives

s s y s K s u sn c
2 22+ +( ) = +ζω ω ω( ) ( ) ( ) (36)

and after combining terms with powers of s, the equation to be programmed for y(s) is

y s s Ku s y s s K u s y sc n c( ) ( ) ( ) ( ) ( )= −{ } + −{ }− −1 2 22ζω ω ω (37)

which is implemented as a closed-loop controller, as shown in figure 8.

The state-space transfer function for this model is given as

˙
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(38)

which can be used as the SOFFT continuous open-loop command model shown in figure 5.
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Figure 8. Second-order transfer function for continuous models.

First-Order Discrete Formulation

For the application being investigated in this paper, an all-discrete simulation is unlikely since
variables extracted from the simulation are expected to be in continuous form.  The desired approach is to
extract variables directly from the nonlinear simulation, if possible.  Another possible approach is to
create linear models during each iteration and, if this is the case, these linear models could then be
discretized.  Furthermore, for a FF flight controller application, an all discrete formulation is a viable
candidate.  For these reasons and since this methodology is closely aligned to the continuous formulation,
the approach is included.

The discrete state-space representation for a dynamic system is

x x u

y x

y x u

k k c k

k k

k k c k

+

+

= +

=
= +

1

1

Φ Γ

Φ Γ

,

,

(39)

which is illustrated in figure 9.  Typically, the designer specifies a transfer function of the form shown in
equation (31) or the equivalent state-space form shown in equation (34), which must then be transformed
to the discrete plane.  The equations for Φ and Γ are approximated by the series expansion
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...
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(40)

where a third-order expansion is used above.  A third-order expansion is practical for a flight controller
with sampling rates of 40 to 80 Hz.  Since the plant model is discrete, the plant inversion transfer
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function, shown in the dashed box of figure 9, is represented as a time delay, as discussed previously.
The closed-loop NDI controller does not have any dynamic elements in the implementation.
Equations (39) are used as the SOFFT open-loop command model in figure 4.

Second-Order Discrete Formulation

Starting with the continuous state-space model in equations (38),  the four components of Φ and two
components of Γ  can be expanded as

φ
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( )

( )
(42)

where the subscripts represent row and column designation.  These equations can then be implemented by
transforming equations (39) into the form

x z zI u z

y z x z x z

c( ) [ ] ( )

( ) ( ) ( )

= −

= [ ] =

−Φ Γ1

11 0
(43)

and for the second-order discrete system the solution for y(z) is

y z
z K

z K z K
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+[ ]
+ +

γ 1 1
2

3 2

(44)
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Figure 9. First-order transfer function for discrete models.
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where

K
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K
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3 11 22

= −
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γ φ γ φ
φ φ φ φ

φ φ( )

(45)

Figure 10 contains the diagram for the second-order discrete model.  For the NDI implementation, the
controller only requires one dynamic element.

The state-space representation for figure 10 is
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(46)

which is the same form as the original continuous state-space equations (38), but with transformed
elements.  Equations (46) would be implemented in figure 4 for the SOFFT open-loop command model.

If a discrete integrator implementation is used for the plant inversion process by feeding back
Hx(Φx − I) in place of HxΦx in figure 4, then a SOFFT open-loop incremental model would be used.  The
incremental command  into the plant inversion is y yz k z k, ,+ −( )1 .  Moments can easily be generated in this
linear implementation by multiplying the incremental command and the plant feedback by the inertia
normalized by the sampling period (Iy / T for the longitudinal example) and dividing the control input by
this same factor.
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Figure 10. Second-order transfer function for discrete models.
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Hybrid Controllers

The typical situation for the application defined in this paper is to have a combination of a continuous
plant and a sampled data controller that contains discrete dynamic elements. The plant would appear to be
continuous since numerical integration will be used for the equations of motion, and variables extracted
from the simulation are expected to be in continuous form, as opposed to being in discretized form.
Inputs and outputs from the simulation will be sampled data at the controller sampling period T.

The approach is to use the continuous models described earlier in combination with a Tustin
transformation for integrators within the controller.  By using this approach, the first-order model shown
in figure 7 remains unchanged.  The second-order model shown in figure 8 will have the integrator
modified by the transformation

s
T z

z
− = +

−
1

2

1

1
(47)

which is shown in figure 11.  Combining this Tustin integrator with the second-order continuous model
shown in figure 8 and expanding the controller portion of the closed-loop plant inversion model gives the
NDI hybrid controller implementation shown in figure 12.  This approach allows variables ω, ζ, and ωn to
be varied directly without the need for transformations.  A state-space representation for the Tustin
integrator is

x x Tu

y x u

k k k

k k
T

k

+ = +

= +
1

2

(48)

A SOFFT hybrid controller implementation is illustrated in figure 13, where the filter implementation
of equation (30) is used for the controlled variable(s).  The only dynamics within this controller are for
the discrete open-loop command model.  In a simulation of this hybrid configuration, a Tustin model was
found to be slightly better than the standard exponential discrete model because the desired output has a
slight lead which helps to compensate for the first-order filter lag in the plant.

Simulation Results

Several of the configurations described in this paper were evaluated in MATRIXx BUILD by using a
linear longitudinal plant model with four states and one control.  The model was taken from the HARV
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2
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Figure 11. Tustin transformation for an integrator.
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Figure 13. SOFFT hybrid controller implementation for including a filter in the controlled channel.

(High-Alpha Research Vehicle) database (ref. 9, see appendix for some longitudinal models) for a flight
condition of Mach 0.7, α = 3.58°, and 25 000-ft altitude.  The four states are velocity V, angle-of-attack α,
pitch rate q and pitch attitude θ, and the control is a symmetric elevator.

A second-order command model was used for the response.  Referencing equation (35), ω = 4 rad/sec,
ζ = 0.8, ωn = 1.5 rad/sec, and K = 10.667 to give unity steady-state gain.  A value of ω = 4 rad/sec is
level 1 (ref. 5) since the ratio of nz / α is approximately 16 and the CAP (control anticipation parameter)
is approximately 1.0, which is between the level 1 limits of 0.28 and 3.6.  Also, ζ = 0.8 is well above the
minimum level 1 lower limit.  The numerator zero was selected arbitrarily, but it is a reasonable number.
A pitch-rate command was used giving Hx and Hy as shown in equation (24).

Configurations tested were

1)  the standard SOFFT FF controller structure in figure 3
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2)  the equivalent SOFFT discrete FF controller structure in figure 4

3)  the equivalent SOFFT continuous FF controller structure in figure 5

4)  the NDI closed-loop continuous controller structure in figure 8

5)  the NDI closed-loop discrete controller structure in figure 10

6)  the  NDI hybrid controller structure in figure 12

7)  the SOFFT hybrid controller structure in figure 13

In each case a step input of unity gain and of two seconds duration was the forcing function, and a
sampling period of 0.0125 seconds was used for the discrete structures.  Based upon the parameter values
selected, two seconds is sufficient to capture the response and settling time.  The equivalent SOFFT
discrete FF controller structure was used for the baseline test for these reasons: 1) a moment command
Mdes , was easily implemented, 2) an error signal for the difference between the command model
response and plant model was readily available compared to the NDI formulations shown, and 3) it was
discrete and was a very small change from the standard SOFFT configuration.

The first step was to verify that the equivalent SOFFT discrete FF controller configuration was correct
by comparing it against the standard SOFFT FF controller structure in figure 3.  All signals were identical
and the error signal was zero.  Simulation results for the baseline response are shown in figure 14.  The
left-hand column represents the four plant model outputs (V, α, q, θ), while the right-hand column

contains the control signal ux k,
*  the command model output yz,k, the moment command Mdes, and the

error signal.

In figure 14, ux k,
*  and Mdes have nonzero values at time zero, which is due to the direct feedforward

path from the input in figure 3.  This result can also be seen in the equivalent SOFFT model in figure 4
since the plant inversion loop is driven by yz,k+1.  The step input was chosen at time zero to avoid
numerical integration error.  When the input was administered at a time greater than zero, the numerical
integrator assumed the step to be a fast ramp between input points, leading to error in the continuous
systems time responses (configurations 3 and 4).  This anomaly was investigated, and the error was
essentially eliminated by increasing the number of input data points by an order of magnitude.  Inputting
the step at time zero completely eliminated this problem.

The second step was to evaluate all seven configurations, as demonstrated by the pitch rate response in
figure 15.  Data for the first five configurations are identical to at least 5 digits.  Both of the hybrid
controllers have a sampling period of 0.0125 second, and these configurations both have some error in the
time response.  The pitch rate response of the NDI hybrid controller (sixth configuration) leads all other
cases and has a slightly larger peak amplitude.  This error is likely due to approximating the controller
integrator by using a Tustin integrator (see fig. 12).  The response of the SOFFT hybrid controller
(seventh configuration) initially lags the response of the first five configurations, but it catches up by
approximately 0.3 second.  This configuration contains a Tustin open-loop command model and a filter
frequency af  of 160 rad/sec (see fig. 13).  The filter frequency was selected to approximately balance the
lead (T/2 sec) of the Tustin command model.
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Figure 14. Baseline response for a two-second step input.

A second investigation was made to evaluate results with a control-signal position limiter of ±0 8. °
inserted prior to the plant model input.  This limit was selected arbitrarily to limit the peak values of ux k,

* .
A doublet at uc of unity magnitude and of one second full width was the forcing function.  Figure 16
shows time history plots of the pitch rate response, the control signal into the limiter, and the control
signal limiter output, which is also the plant input control.  Three cases are shown:

1. the baseline case using the standard SOFFT FF controller structure in figure 3 with no limiting (solid
line)
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Figure 15. Pitch rate response for seven configurations.

2. the SOFFT hybrid controller structure in figure 13 with a limiter (dashed line)

3. the NDI hybrid controller structure in figure 12 with a limiter (dotted line)

Only two cases with control position limiters are shown since results for case 2 were very close to
those of another SOFFT controller configuration with a limiter, and results for case 3 were very close to
those of another  NDI controller configuration with a limiter.  In both cases, the hybrid configurations
were slightly worse than their counterpart configurations.
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Both hybrid controllers show approximately the same performance for the first 0.9 second, but then
the NDI hybrid controller shows additional phase lag.  Whenever the SOFFT hybrid control signal is not
position-limited, the pitch-rate response matches the baseline response.  The SOFFT hybrid control signal
into the limiter has a significantly larger amplitude during saturation, but the control signal gets out of
saturation much faster than the NDI hybrid control signal.  These results could be misleading since the
control signal of the SOFFT hybrid controller could possibly exceed a rate limit.  Rate-limiting has not
been investigated during this study, but it is important and will be investigated in the future.
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A sinusoidal input of 0.5 Hz and 3 deg/sec amplitude at uc was used to verify that the previous results
are independent of a quick changing input.  The amplitude was chosen such that the unlimited control
signal would exceed the saturation limit of ±0 8. ° inserted prior to the plant model input, and the
frequency was chosen since it is a reasonable pilot input and is within the bandwidth of the command
model.  Figure 17 has time history plots of the same signals shown in the previous example and the
results are the same.  Tracking performance of the controlled variable for the SOFFT hybrid configuration
is better than that of the NDI hybrid configuration, but the control signal of the former case changes
rapidly.  If rate limiting is encountered, tracking performance would be reduced and additional problems
would be encountered.
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Figure 17. One-half Hz sinusoidal response for baseline and two hybrid configurations with actuator limiter.
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Conclusions and Discussion

This paper contains the initial results of an ongoing study for developing a generic simulation tool to
determine achievable control dynamics and control power requirements while undergoing simulation
maneuvers with perfect tracking.  The two approaches that were investigated were exact nonlinear
dynamic inversion (NDI) and SOFFT (Stochastic Optimal Feedforward and Feedback Technology), and
both continuous and discrete formulations were included for each approach.  The following list contains
the main conclusions and explanations where required:

1. Equations for SOFFT can be rearranged into a form that eliminates the need to explicitly calculate the
feedforward gain matrices.  The revised equations clearly illustrate a closed-loop plant model
structure that performs plant inversion.

2. Equivalent models have been developed for both discrete and continuous versions of SOFFT.  The
original version of SOFFT had only been developed for a discrete model.  Inertia terms can be
incorporated into each of these configurations to create moment commands, and it can be seen that
SOFFT and NDI have the same form for the closed-loop plant model.

3. The SOFFT approach uses an explicit open-loop command model whereas NDI integrates the
command model into a closed-loop approach.

4. The transfer function for the controlled variable of the closed-loop plant model is an integrator for the
continuous controller and a time delay for the discrete controller.  Any linear combination of states
can be used for the controlled variable.  The internal dynamics for the uncontrolled states will be
modified from the original open-loop characteristics.  In addition, a nonminimum phase system will
result in an unstable closed-loop system for any configuration since the zeros of the open-loop plant
become poles of the closed-loop plant model.

5. First- and second-order models have been developed for continuous control systems, discrete control
systems, and hybrid control systems.  The NDI approach makes direct use of the transfer function
characteristics of the plant inversion model in the controller characteristics and therefore uses one
dynamic element less than the SOFFT controller.

6. Formulation of the discrete controller shows that the structure is the same as the continuous
controller.  The main difference is that gains for the discrete controller are combinations of terms
used in the continuous controller.  The discrete controller also requires an approximation of the
discrete gains in order to implement in real time.

7. The typical situation for the application defined in this paper is to have a combination of a continuous
plant and a sampled data controller that contains discrete dynamic elements, forming a hybrid control
system.  The plant will appear to be continuous since numerical integration will be used for the
equations of motion and variables extracted from the simulation are expected to be in continuous
form, as opposed to discretized form.  Inputs and outputs from the simulation will be sampled data at
the controller sampling period.

8. Seven control structure variations were evaluated in simulation by using a linear longitudinal model.
As demonstrated by a two-second step input pitch-rate response, all configurations gave effectively
the same results.  The NDI hybrid controller has a slight error in the pitch rate response, which is
likely due to approximating the controller integrator by using a Tustin integrator.
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9. A control signal position-limiter was inserted at the plant input of both a SOFFT hybrid controller
and an NDI hybrid controller.  A pitch doublet and a sinusoid were used to test these configurations.
The SOFFT hybrid controller gave better tracking performance in both cases, but the control signal
changed rapidly when it came out of saturation, and it is possible that rate limiting, which would
reduce performance, might be encountered.  Rate  limiting was not included in this ongoing study, but
it is a source of concern.

The next major step in this study is to investigate use of a full nonlinear airplane simulation.  A  key
aspect is to determine whether the desired variables can be extracted from the airplane aerodynamic
database,  which is typically in table form.  The preferred approach is to extract aerodynamic moments
(or moment increments) separately from control moments, as described in the first section on the review
of NDI.  If this approach cannot be accomplished, then the calculation of linear plant models for each
iteration during a simulation will be investigated.  Any of the configurations described in this paper can
then be used with linear plant models.
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